

# GD2FS: 面向AI的新一代分布式文件系统

皮振伟 <pizhenwei@tensorfer.com> 2025-10





# AI时代业务负载的新特征





# 资源

。 计算:大量的运算由GPU完成

。存储:更多、更快的NVMe设备;GPFS的大量使用

。 网络:200Gbps、400Gbps网络大规模使用;RDMA大规模使用

## 数据

。 数据由KB、MB级变成GB、TB级

## 程序

。 各类的逻辑运算变成了模型的数据运算





| 处理器             | 核心数           | FP64 FLOPS   | FP32 FLOPS   | AI 算力                 |
|-----------------|---------------|--------------|--------------|-----------------------|
| AMD EPYC 9654   | 96            | ~1.42 TFLOPS | ~2.84 TFLOPS | N/A                   |
| NVIDIA H100 SXM | 132 * 64 * 32 | ~34 TFLOPS   | ~67 TFLOPS   | ~3958 TFLOPS<br>(FP8) |

常见的CPU服务器使用2 NUMA nodes, GPU服务器使用8 GPUs,单台服务器的计算性能相差多个数量级。

数据来源Deepseek





# • 传统的逻辑计算

。 规则驱动,基于知识推理:将人类知识编码成明确的逻辑规则

# • AI的数据计算

。 数据驱动,从样例中学习: 让机器从大量数据中自动发现模式和规律

因此,AI场景相比于逻辑计算,数据变得越来越多,程序变得越来越少。以及,资源的消耗越来越多。





# AI驱动的存储需求变革: 现状与挑战分析





# 训练

- 。 大文件场景,保存Checkpoint,以及从checkpoint恢复训练
- 。 大量小文件场景,GPFS大量应用

## 推理

- 。 KV Cache卸载。 KV Cache是否命中,成本相差约10倍
- 。 引擎冷启动,模型加载,例如DeepSeek-R1-0528约**642GB** 
  - 云计算Spot实例
  - 研发效能

## 训推一体

。 保存训练结果、推理调试





# • KV Cache卸载

- 。 vLLM/sglang均使用Host memory缓存KV Cache。目前命中率普遍不高
- 。 分布式存储的KV Cache能够提升KV cache命中率
- 。 TTFT(Time To First Token)是LLM服务的核心指标,存储延迟直接决定产品体验
- 。 KV Cache可被重计算,原则上可以丢失

# • 推理引擎冷启动

- 。 提升Spot实例的有效服务时间
- 。 提升研发效能
- 。 进一步地,是否可以使用K8S调度推理引擎实例,甚至FaaS化?

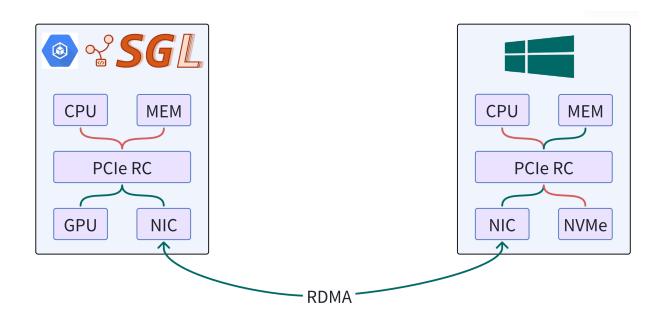




# GD2FS的核心设计



|    | GPU                | DDR5                   | 网卡                          | NVMe                                            |
|----|--------------------|------------------------|-----------------------------|-------------------------------------------------|
| 吞吐 | 2TB/s * 8 = 16TB/s | 8 channels<br>~300GB/s | 400Gbps * 4 =<br>200GB/s    | W 2GB/s * 4 = 8GB/s<br>R 6GB/s * 4 =<br>24 GB/s |
| 延迟 | ~100+ ns           | ~80+ ns                | 1K RDMA ~2us<br>1K TCP ~6us | 4K Write ~20us<br>4K Read ~80us                 |


AI场景下的主要运算发生在GPU,数据的读取、写入过程中,NVMe是性能瓶颈。



# Tensorfer

#### GD2FS是GPU Direct Distributed File System的缩写,其命名即设计理念:

- 深度融合 GPU 加速与高速网络能力,支持GPU Direct RDMA
- 同时支持TCP多网卡、多流并发





# Linux Kernel Page Cache

- 。 单机作用域,不支持分布式共享
- 。 Page(4KB)级别的回收
- 。 kswapd(per NUMA)的性能瓶颈

# • GD2FS的分布式缓存

- 。 分布式作用域,全局共享
- 。 文件级别的回收
- 。 多核更加友好





## • 用户态内存管理

- 。 Page Size:内核4K粒度过小,采用更大的"Page Size",提升传输效率
- 。 内存淘汰策略:整个文件级别淘汰,避免系统颠簸
- 。 大页: 支持Hugetlbfs的匿名映射和文件映射
- 。 Zero Copy: 数据无额外的复制

# • 用户自定义缓存策略

- 。 支持分布式FADV-WILLNEED,预读数据到缓存
- 。 支持分布式FADV-DONTNEED,精确释放缓存





# 单副本

- 。 契合KV Cache可重计算特点
- 。 更低的成本、更大的存储容量
- 。 更低的延迟,write back方式极速写入

## • 多副本

- 。 持久化:Checkpoint、模型文件使用经典的三副本,防止数据丢失
- 。 缓存: 1-N副本弹性伸缩,防止推理引擎的启动风暴





#### • 提交I/O

ssize\_t xfer\_gd2fs\_preadv(xfer\_gd2fs\_ctx \*ctx, void \*id, const char \*filepath, uint64\_t off, const xfer\_gd2fs\_sge \*sges, uint16\_t nsge, uint16\_t flags);

#### • 等待完成

```
typedef struct xfer_gd2fs_completion {
  void *id; /* submission passed back */
  uint64_t value;
  uint16_t status;
  uint8_t reserved[6];
} xfer_gd2fs_completion;
```

int xfer\_gd2fs\_wait(xfer\_gd2fs\_ctx \*ctx, xfer\_gd2fs\_completion \*completions, int
maxcomp, int timeout\_ms);



#### • 提交I/O

```
def Read(self, filepath: str, offset: int, sges: list[SGE], flags: int, desc: str) -> Request:
    """
    Returns: Request object for tracking operation
    """
```

#### • 等待完成

```
def Wait(self, timeout: int) -> list[Request]:
    """

Returns: List of completed requests
    """
```





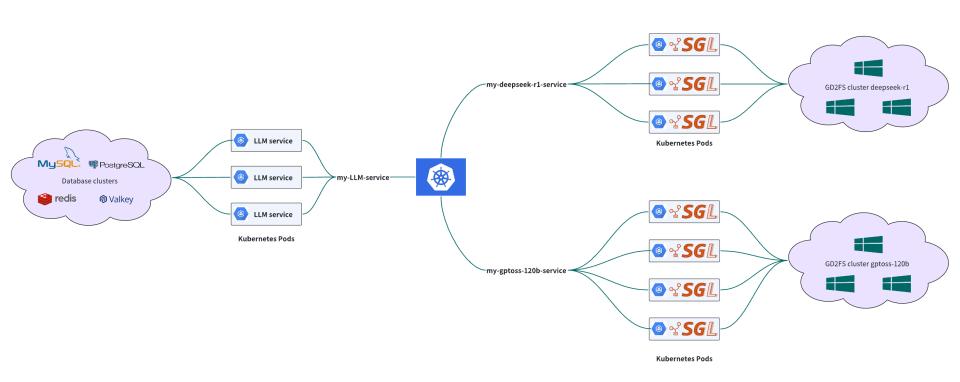
# GD2FS的典型性能指标



| RDMA           | RW | 64M (AVG us) | 256M (AVG us) | 1G (AVG us) |
|----------------|----|--------------|---------------|-------------|
| GPU -<br>GD2FS | 读  | 1529         | 5938          | 23601       |
|                | 写  | 4400         | 9975          | 35774       |

| ТСР            | RW | 64M (AVG us) | 256M (AVG us) | 1G (AVG us) |
|----------------|----|--------------|---------------|-------------|
| DDR -<br>GD2FS | 读  | 4249         | 16673         | 67280       |
|                | 写  | 10654        | 36757         | 123187      |

张量跃迁


| ТСР      | 模型                             | Kimi-K2-Instruct | DeepSeek-R1-<br>0528 | Qwen3-Omni-<br>30B-A3B-Instruct |
|----------|--------------------------------|------------------|----------------------|---------------------------------|
|          | 模型大小                           | 959G             | 642G                 | 66 <b>G</b>                     |
|          | GD2FS Cache Miss<br>(NVMe * 1) | 154 +/- 3 s      | 105 +/- 2 s          | 11 +/- 1 s                      |
| 400G * 1 | GD2FS Cache Miss<br>(NVMe * 2) | 88 +/- 3 s       | 57 +/- 2 s           | 7 +/- 1 s                       |
|          | GD2FS Cache Hit                | 37 +/- 2 s       | 25 +/- 1 s           | 3 +/- 0.2 s                     |
| 400G * 2 | GD2FS Cache Hit                | 32 +/- 2 s       | 19 +/- 1 s           | 2.5 +/- 0.2 s                   |



# 推理架构演进展望









# Thank You

